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Abstract The kinetic and equilibrium behaviour of Ihe order parameter, Qd, of Al. Si ordering 
in anorthite has been compared with the m i l s  of current rate theories (king-type Glauter. king- 
l y p  Kawasaki and Landau-type rate equations). Although all rate equations can be adjusted 
lo fit the time evolution for an accessible small interval of Qd(f) between 0.76 and 0.88, 
significant systematic differences were found for the equilibrium behaviour Qod(T). Q d ( T )  is 
well described by Landau theory but not by Bragg-Williams equations. 

The rate laws are rather model-independent for Qod > 0.76, bul significant differences are 
expected for lhe ordering behaviour of cryslals with smaller values of Qod (e.g. < 0.5). 

1. Introduction 

There are two commonly adopted approaches for analysing kinetic processes of cation 
ordering in crystals. The first approach assumes that cation ordering can be described 
quantitatively by king models [ 1-51. Cation ordering in framework structures almost always 
produces large spontaneous strains and it is due to the strain-related effective long range 
correlations that mean field approximations appear justified [6]. In this case, the equilibrium 
order parameter is expected to follow a Bragg-Williams behaviour while the kinetics should 
follow the Glauber rate law [7,8]. 

Whereas this first approach is, in various forms and guises, the preferred model for most 
theorists, an alternative approach is often used by experimentalists. This second approach 
argues that the relevant order parameter or related state variable is a ‘continuously variable 
function’, even on a local scale, so that the mapping on a simple two-state variable is 
incorrect [%Ill. More precisely, it is assumed that each kinetic event changing a local 
state variable by SQ can be infinitesimally small (SQ << 1 / N ,  where N is the number 
of state variables per unit volume). This condition is not fulfilled in the case of king 
models with SQ = l/N. In an n-state Pons model, S Q  = l/nN < 1/N, numerical 
simulations have shown that already for n > 4 the kinetic behaviour is well approximated 
by a rate law based on such a continuously variable order parameter [12]. In fact, one 
might expect intuitively that the case SQ < 1 / N  is always applicable for crystal structures 
with a large number of intermediate states of ordering within one unit cell (such as in the 
anorthite structure discussed in this paper). We show below that the rate law is, indeed, well 
described by a continuously variable order parameter but not by a two-state king parameter. 

In the similar case of conserved order parameters, the equivalent problem of ‘discrete’ 
and ‘continuously’ variable state parameters has been analysed ever since the problem was 
clearly identified by h g e r  [13]. The mathematical mapping of discrete, atomic state 
parameters on to a continuously and smoothly variable order parameter via coarse-graining 
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is essential for the derivation of Cahn-Hilliard-type rate laws [14]. Such coarse-graining 
hinges on the fact that equilibration on a length scale smaller than the coarse-grained length 
scale, 1, is much faster than the processes which one wants to describe by macroscopic 
rate laws. Although such an assumption appears to be safe for most spin& processes in 
metals, it is not obvious why such a length scale should exist in the case of cation ordering 
in framework structures. 

The second argument against the use of Ising-type models for the quantitative description 
of cation ordering in framework structures stems from the experimental observation that the 
excess Gibbs free energy of the equilibrium phase transition is anharmonic in enthalpy 
but much less so in entropy [15]. This means that the equilibrium behaviour of the order 
parameter follows a Landau-type behaviour which is, at T << Tc, quantitatively very different 
from a Bragg-Williams behaviour (more precisely, the double-well parameter as defined in 
[ 161 is much smaller than unity). The kinetic rate law is then determined by [9,l7] 

(1) 

where G is the excess Gibbs energy, Q is the order parameter and 4, tC are characteristic 
lengths. The kinetic operator in the main bracket becomes unity for non-conserved order 
parameters (& = 0). Let us note here again, that the quantitative time dependence of Q 
in an n-state Pot& model for n > 4 is practically indistinguishable from the solution of 
equation ( I )  [12]. 

If we now compare the quantitative predictions of both approaches, i.e. the two-states 
Ising type and the rate law in equation (1). we find that they are not very different for 
T 2 0.8Tc [7,8]. At lower temperatures, however, we find that both sets of results are 
different enough to matter for applications of the predicted rate behaviour in material 
sciences and geology [ 18-24]. m e  foremost question is then, which rate law is correct 
for the description of cation ordering in framework structures. Although the theoretical 
foundations for either approach seem to be rather clear, it appears that this question has not 
been approached experimentally. 

The reason for the lack of previous experimental studies is the fact that only very few 
materials allow such studies. This is because cation ordering (e.g. AI, Si in feldspars) 
is very slow at low temperatures where the order parameter is large. In order to avoid 
studies on time scales of many years, virtually all studies so far have concentrated on the 
kinetic behaviour at high temperatures (e.g. T 2 0.9T,) where the differences between the 
predictions of various models are very small. 

In our present study we have used a new system, caA12Siz08, in which the Tc of AI, 
Si ordering, described by the order parameter Q d  may be as high as 2 2800 K [Z]. 
The ordering at 0.5 T, 1400 K is still fast enough to be followed experimentally which 
allows us to test the two models. The disadvantage of this material is. however, that no 
uniform starting material with less than 75% order could be produced so far. Our study is 
therefore limited to changes of Qod between 0.76 and 0.88. We show in this paper from the 
simultaneous refinement of equilibrium and kinetic data that we can reject the Ising/Glauber 
models whereas we find good agreement with the second type of behaviour related to time 
dependent Landau theory. 

Q 0: [ I  - (~~/ t ) ' ( s inh~V/~V)I(aG/aQ)  

2. Experimental details 

Crystalline anorthite, CaAlZSizO~, was produced from glass of the same composition as 
described in detail by Carpenter [251. The samples were annealed at high temperatures for 
sufficiently long times that a homogeneous degree of AI. Si order, with antiphase domains 
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coarser than 3000 A, was generated (16 days at 1673 K and 3 days at 1808 K) [=I. The 
degree of order was determined from lattice constants via the empirical relationship 1261: 

Q d  = lO.l& (2) 
where E, is the spontaneous strain obtained from room temperature lattice parameter data. 
Lattice parameters were refined from CaAl~Si20p. powder diffraction lines measured with a 
focussing Guinier camera (Huber). The standard deviations (lu) were typically of the order 
of 0.002 8, for a, h, c, 0.02" for a, 0.01" for j3 and 0.01' for y .  This leads to a relative 
error in Q d  of 2%. 

For the kinetic runs, the powdered starting material with Q d  = 0.76 was packed into 
platinum foil and heated for various amounts of time at 1673 K, 1473 K and 1273 K, 
respectively. The equilibrium values of Qd in the temperature interval between loo0 K 
and 1700 K and the excess enthalpies for the samples were published previously [Z]. 
We include for our calculations only data obtained on synthetic samples at T 6 1670 K 
because there is doubt that samples prepared at higher temperature might contain larger 
defect concentrations, possibly due to premelting effects. 

We argue below that the new determination of the relevant Landau-type energy as based 
on the simultaneous refinement of equilibrium and kinetic data leads to similar values for 
a first-order (2-46) potential as derived from equilibrium data alone [25]. The difference 
between first-order, tricritical and second-order transitions is somewhat marginal, however, 
and we include refinements for all models in order to show the internal consistency in all 
cases. 
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(c) Landau model 

Q = ((Tc - T)/TC)'/' second-order 

Q = ((Tc - T)/Tc)'/' hicritical (14) 

Q = -B/2C + JB2/4C2 - ( A / C ) ( T  - Tc) (15) first-order 

Q = - ( l / r k s T ) a G / a Q  (16) 

In each case I is an activated time constant 5 = soexp(E,/kT). The Kawasaki mte 
law for a conserved order parameter is unrealistic for the process of AI, Si ordering but is 
included for comparison with the Glauber rate law in order to test if local correlations are 
significant. 

The two Ising-related models contain as adjustable parameters the time constant TO, 
the activation energy E,, the enthalpy of solution HL,, for Q d  = 0 and the transition 
temperature T,. In addition, the Landau-type model contains, instead of Tc, the coefficients 
of the Landau potential A ,  B and C ,  from which T, can be calculated by scaling Q d  = 1 
at T = 0 K. We have tested three forms of the Landau potential, namely for a second-order 
(C = 0), tricritical (B = 0) and first-order ( B  < 0, C > 0) phase transition. We will 
see below that the effect of such changes on the rate law was very small when the free 
parameters were fitted to the available experimental data. 

For each model all the parameters were determined simultaneously by minimizing the 
objective function F(ro. E,, HL,,, T,, A ,  E .  C) 

= x2 = f Q u  + f Q q  + f H h  

consisting of three least squares functions of the form 

where Nj is the number of datapoints in each data set. The total number of independent 
datapoints is 53. The value for xz is given in table 1. 

Table 1. Parameters of the five models defined in equations (3H18). The number of paramekrs 
fiued U, 53 independent datapoints is 4 (Iring). 5 (Landau uicritical, sgond-order) and 6 (Landau 
finl-order). The value of T, in the Landau models is given for comparison but is not a fitted 
parameter (but results from the values of A. B .  C). The values of x2  can be compared directly 
b u s e  the number of fitted p m e t e n  (i.e. 4.5.6) is always small compared with the number 
of independent observations (i.e. 53). 

king Landau 

Glauber Kawasaki 1 st-order Tricritid 2nd-order 

I;' (h-I) 1.950 x IOl3  2.048 x I O t 3  2.266 x 10" 1.063 x 10" 4.242 x IOto  
Ea (W mol-') 390.4 373.0 3774 369.8 361.1 
H:tn (kl mol-') -39.65 -39.63 -30.83 -26.13 -14.69 

A (U mo1-l K - I )  - - 4.067 x 3.873 x 3.647 x 
Tc (K) 2200 2200 (U=) (3477) (6146) 

C (kl mol-') - - 202.2 134.7 - 
- -107.6 - 224.2 

XI 0.227 0.228 0.057 0.057 0.057 

( k ~  mol-') - 



Time evolution of ordering in anorthite 2965 

I. 

I. 
U .3 

0 .2 

00 533 lom t a l  mm 2yJo 

temperature [K] 

T = 1273K .9* - 

U 
$ .86 

g .8¶ 

3 .70 

L g .82 
I. 
D .so 

.76 

.74 
IO* 10-2 10'' lo" LO' I@ Id lL+ 

time [hrs] 

L -% .I .2 .s .t .5 .5 .7 .8 .9 
order parameter Qoa 

.92 

0 

Fwre 1. Expimenid data and calculated curves 
using the parameter values given in tzble 1 fcu the 
Ising/Glaukr model (solid line) awl IsinglKawasaki 
model (dashed line): equilibrium order parameter 
Q d ( T ) .  enthalpy of solution Hdn as a function of Ihe 
ordm parameter (data from [W), time evolution of tk 
order parameter for isothermal annealing at 1273 K. 
1473 K and 1673 K. 
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Figure 2. Experimental dafa and calculated curves 
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~ t g u ~  4. Kinetic driving force aG/agd at T' = 
1273 K calculated with the parameters given in table 1 
for the three Landau potentials: fint-order (dotted line). 
Izicritical (dashed line). and second-order (solid line). 

Starting with some trial values for the parameters, fob has been calculated by solving 
the differential equation for Q for all the kinetic data using a Runge-Kutta method. f~~ 
has been determined from the equilibrium data. f"- follows from the relation between the 
excess enthalpy H and the measured enthalpy of solution H,I, 

(21) 
where Hz,, is the value for Q d  = 0. 

The objective function F was then minimized with respect to all parameters using a 
Nelder-Mead downhill simplex method [27]. The strategy in trying to find the global 
minimum of F has been described for a similar problem in 1231. The resulting sets of 
parameters are listed in table 1. 

The theoretical curves and experimental data are compared for each model in figure 1, 
for the Ising models and in figure 2 for the Landau models. In each case, the figures show 
the equilibrium cwe  Q d ( T ) ,  the heat of solution Hs0h as a function of the order parameter 
and the time evolution of the order parameter at 1273 K, 1473 K and 1673 K. respectively. 

By inspection of the systematic deviations between the observed and calculated 
parameters it is clear that only the Landau-type models coincide with the experimental 
results. The disagmment with the Ising-type models is not so much in the rate behaviour 
but the temperature dependence of Qd in thermodynamic equilibrium. The apparent 
independence of the rate law with respect to the model assumptions is somewhat accidental, 
however. It is essentially due to the small interval of Q d ( t )  which could be covered in 
the experiment. This point is illustrated in figure 3 where aQ&,/ar is plotted as a function 
of Qd using the fitted values for the parameters. At values of Q d  LJ 0.8, i.e. in the 
experimental region, all curves roughly coincide and similar rate behaviour is expected for 
all models. At lower values of Qd, the Kawasaki rate law becomes very efficient and 

H ( Q d  = &, - &odQcd 
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much faster rates are expected for this model than for the others, which in tum do not 
differ significantly. The equilibrium behaviour, on the other hand, does show significant 
differences between the king and Landau model with good agreement between experimental 
and theoretical results for the Landau case only. 

We finally comment on the possible variations between the three Landau potentials 
tested. All three potentials have the same slopes aG/aQd for Q0d in the experimental 
region (figure 4). Equally, the calculated values of the enthalpy of solution I fso l , ,  are virtually 
identical and so is the eqailibrium curve Q d ( T )  for0.7 c Q d  < 0.9. A distinction between 
the three Landau potentials based on the experimental data is therefore not possible. 

In order to distinguish between these potentials, G / a Q d  has, in addition to the data 
presented here, to be known at much lower values of Qd. say 0.5. For this value the 
rate of ordering would change by a factor of 5 between the first-order and the second- 
order behaviour. This would make an experimental distinction between them rather easy. 
Unfortunately no such structural states could be produced as yet and we find that for realistic 
values of Qd, all three Landau potentials reproduce the experimental observations very well. 

E KH Salje et a1 
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